6 research outputs found

    Evaluation of prototype air/fluid separator for Space Station Freedom Health Maintenance Facility

    Get PDF
    A prototype air/fluid separator suction apparatus proposed as a possible design for use with the Health Maintenance Facility aboard Space Station Freedom (SSF) was evaluated. A KC-135 parabolic flight test was performed for this purpose. The flights followed the standard 40 parabola profile with 20 to 25 seconds of near-zero gravity in each parabola. A protocol was prepared to evaluate the prototype device in several regulator modes (or suction force), using three fluids of varying viscosity, and using either continuous or intermittent suction. It was felt that a matrixed approach would best approximate the range of utilization anticipated for medical suction on SSF. The protocols were performed in one-gravity in a lab setting to familiarize the team with procedures and techniques. Identical steps were performed aboard the KC-135 during parabolic flight

    Minor surgery in microgravity

    Get PDF
    The purpose is to investigate and demonstrate equipment and techniques proposed for minor surgery on Space Station Freedom (SSF). The objectives are: (1) to test and evaluate methods of surgical instrument packaging and deployment; (2) to test and evaluate methods of surgical site preparation and draping; (3) to evaluate techniques of sterile procedure and maintaining sterile field; (4) to evaluate methods of trash management during medical/surgical procedures; and (4) to gain experience in techniques for performing surgery in microgravity. A KC-135 parabolic flight test was performed on March 30, 1990 with the goal of investigating and demonstrating surgical equipment and techniques under consideration for use on SSF. The flight followed the standard 40 parabola profile with 20 to 25 seconds of near-zero gravity in each parabola

    Requirements for Modeling and Simulation for Space Medicine Operations: Preliminary Considerations

    Get PDF
    The NASA Space Medicine program is now developing plans for more extensive use of high-fidelity medical Simulation systems. The use of simulation is seen as means to more effectively use the limited time available for astronaut medical training. Training systems should be adaptable for use in a variety of training environments, including classrooms or laboratories, space vehicle mockups, analog environments, and in microgravity. Modeling and simulation can also provide the space medicine development program a mechanism for evaluation of other medical technologies under operationally realistic conditions. Systems and procedures need preflight verification with ground-based testing. Traditionally, component testing has been accomplished, but practical means for "human in the loop" verification of patient care systems have been lacking. Medical modeling and simulation technology offer potential means to accomplish such validation work. Initial considerations in the development of functional requirements and design standards for simulation systems for space medicine are discussed

    Efficacy of Cardiopulmonary Resuscitation in the Microgravity Environment

    Get PDF
    End tidal carbon dioxide (EtCO 2) has been previously shown to be an effective non-invasive tool for estimating cardiac output during cardiopulmonary resuscitation (CPR). Animal models have shown that this diagnostic adjunct can be used as a predictor of survival when EtCO 2 values are maintained above 25% of prearrest values

    Thyroid Function Changes Related to Use of Iodinated Water in United States Space Program

    No full text
    The National Aeronautics and Space Administration (NASA) has used iodination as a method of microbial disinfection of potable water systems in United States spacecraft and long-duration habitability modules. A review of the effects on the thyroid following consumption o iodinated water by NASA astronauts was conducted. Pharmacological doses of iodine consumed by astronauts transiently decreased thyroid function, as reflected in serum TSH values. Although the adverse effects of excess iodine consumption in susceptible individuals are well documented, exposure to high doses of iodine during space flight did not result in a statistically significant increase in long-term thyroid disease in the astronaut population
    corecore